Semistar Linkedness and Flatness, Prüfer Semistar Multiplication Domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

Local–global Properties for Semistar Operations

We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...

متن کامل

semistar dimension of polynomial rings and prufer-like domains

let $d$ be an integral domain and $star$ a semistar operation stable and of finite type on it. we define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong s-domains. as an application, we give new characterizations of $star$-quasi-pr"{u}fer domains and um$t$ domains in terms of dimension ine...

متن کامل

Uppers to Zero in Polynomial Rings and Prüfer-like Domains

Let D be an integral domain and X an indeterminate over D. It is well known that (a) D is quasi-Prüfer (i.e, its integral closure is a Prüfer domain) if and only if each upper to zero Q in D[X] contains a polynomial g ∈ D[X] with content cD(g) = D; (b) an upper to zero Q in D[X] is a maximal t-ideal if and only if Q contains a nonzero polynomial g ∈ D[X] with cD(g) v = D. Using these facts, the...

متن کامل

Uppers to Zero and Semistar Operations in Polynomial Rings

Given a stable semistar operation of finite type ⋆ on an integral domain D, we show that it is possible to define in a canonical way a stable semistar operation of finite type [⋆] on the polynomial ring D[X], such that D is a ⋆-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[⋆]-maximal ideal. This result completes the investigation initiated by Houston-Malik-Mott [18, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2004

ISSN: 0092-7872,1532-4125

DOI: 10.1081/agb-120027969